Pontryagin’s maximum principle for optimal control of SPDEs

AbdulRahman Al-Hussein

Department of Mathematics, College of Science, Qassim University,
P. O. Box 6644, Buraydah 51452, Saudi Arabia
E-mail: alhusseinqu@hotmail.com

Workshop on Stochastic Control Problems for FBSDEs and Applications
Marrakesh, December 13-18, 2010
Outline

1. Problem formulation
 - Statement
 - Assumptions
 - The adjoint equation

2. Pontryagin stochastic maximum principle

3. Plan of the proof
 - Estimates
 - Variational inequality
 - Proof
 - Two more lemmas
 - Proof of main result
Consider the SPDE on a sep. Hilbert space K:

\[
\begin{aligned}
\left\{ \begin{array}{l}
dX^{u(\cdot)}(t) &= \left(A(t)X^{u(\cdot)}(t) + F(X^{u(\cdot)}(t), u(t))\right)dt + G(X^{u(\cdot)}(t))dM(t), \\
X^{u(\cdot)}(0) &= x.
\end{array} \right.
\end{aligned}
\] (1)

- M is a continuous martingale, $<< M >>_t = \int_0^t Q(s) \, ds$, for a predictable process $Q(\cdot)$ s.t. $Q(t) \in L_1(K)$ is symmetric, positive definite, $Q(t) \leq Q$, where $Q \in L_1(K)$ (positive definite).

- $F : K \times \mathcal{O} \to K$ (\mathcal{O} is a sep. Hilbert space).

- $G : K \to L_2(K_0, K)$, $K_0 = Q^{-1/2}(K)$.

- $A(t, \omega)$ is a predictable unbounded linear operator on K.
We shall derive a stochastic maximum principle for this control problem by using the adjoint equation (BSPDE).

- \(u(\cdot) : [0, T] \times \Omega \rightarrow \mathcal{O} \) is admissible if \(u(\cdot) \in L^2_{\mathcal{F}}(0, T; \mathcal{O}) \) and \(u(t) \in U \) a.e., a.s. (\(U \) is a nonempty convex subset of \(\mathcal{O} \)).

The set of admissible controls \(\sim \mathcal{U}_{ad} \).

\[L^2_{\mathcal{F}}(0, T; E) := \{ \psi : [0, T] \times \Omega \rightarrow E, \text{predictable,} \]
\[\mathbb{E}[\int_0^T |\psi(t)|_E^2 dt] < \infty \}. \]
We shall derive a **stochastic maximum principle** for this control problem by using the adjoint equation (BSPDE).

- **u(·) : [0, T] × \Omega → \mathcal{O}** is admissible if \(u(\cdot) \in L^2_\mathcal{F}(0, T; \mathcal{O}) \) and \(u(t) \in U \ a.e., a.s. \) (\(U \) is a nonempty convex subset of \(\mathcal{O} \)).

The set of admissible controls \(\sim \mathcal{U}_{ad} \).

\[L^2_\mathcal{F}(0, T; E) := \{ \psi : [0, T] \times \Omega → E, \text{predictable,} \quad \mathbb{E} \left[\int_0^T |\psi(t)|^2_E dt \right] < \infty \}. \]
Define

- the cost functional:

\[J(u(\cdot)) := \mathbb{E} \left[\int_0^T g(X^{u(\cdot)}(t), u(t)) \, dt + \phi(X^{u(\cdot)}(T)) \right], \]

\[J^* := \inf \{ J(u(\cdot)) : u(\cdot) \in \mathcal{U}_{ad} \}. \]

The control problem for this SPDE (1) is to find a control \(u^*(\cdot) \) and the corresponding solution \(X^{u^*(\cdot)} \) of (1) s.t.

\[J^* = J(u^*(\cdot)). \]

- \(u^*(\cdot) \) is an optimal control.
- \(X^{u^*(\cdot)} \) (or briefly \(X^* \)) is an optimal solution.
- The pair \((X^*, u^*(\cdot)) \) is an optimal pair.
Define

the cost functional:

\[
J(u(\cdot)) := \mathbb{E} \left[\int_0^T g(X^{u(\cdot)}(t), u(t)) \, dt + \phi(X^{u(\cdot)}(T)) \right],
\]

\[
J^* := \inf \{ J(u(\cdot)) : u(\cdot) \in \mathcal{U}_{ad} \}.
\]

The control problem for this SPDE (1) is to find a control \(u^*(\cdot) \) and the corresponding solution \(X^{u^*(\cdot)} \) of (1) s.t.

\[
J^* = J(u^*(\cdot)).
\]

\(u^*(\cdot) \) is an optimal control.

\(X^{u^*(\cdot)} \) (or briefly \(X^* \)) is an optimal solution.

The pair \((X^*, u^*(\cdot))\) is an optimal pair.
Problem formulation

Pontryagin stochastic maximum principle

Plan of the proof

Statement
-Assumptions
-Statement
-Assumptions
-The adjoint equation

(H1) F, G, g, ϕ are C^1 w.r.t. x, F is C^1 w.r.t. u, the derivatives F_x, F_u, G_x, g_x are uniformly bounded.

Also $|\phi_x|_K \leq C_1 (1 + |x|_K)$, some constant $C_1 > 0$.

(H2) g_x satisfies Lipschitz condition with respect to u uniformly in x.

(H3) $A(t, \omega)$ is a predictable linear operator on K, belongs to $L(V; V')$ ((V, K, V') is a Gelfand triple),

1. $2 \langle A(t, \omega) y, y \rangle + \alpha |y|_V^2 \leq \lambda |y|^2 \quad \text{a.e. } t \in [0, T], \text{ a.s. } \forall y \in V,$ for some $\alpha, \lambda > 0$.

2. $\exists C_2 \geq 0 \text{ s.t. } |A(t, \omega) y|_{V'} \leq C_2 |y|_V \quad \forall (t, \omega), \forall y \in V.$
Define the **Hamiltonian**:

$$ H : [0, T] \times \Omega \times K \times \mathcal{O} \times K \times L_2(K) \to \mathbb{R}, $$

$$ H(t, x, u, y, z) := -g(x, u) + \langle F(x, u), y \rangle + \langle G(x)Q^{1/2}(t), z \rangle. $$

The (adjoint) BSPDE:

$$ -dY^{u(\cdot)}(t) = \left[A^*(t) Y^{u(\cdot)}(t) + \nabla_x H(X^{u(\cdot)}(t), u(t), Y^{u(\cdot)}(t), Z^{u(\cdot)}(t)Q^{1/2}(t)) \right] dt $$

$$ -Z^{u(\cdot)}(t) dM(t) - dN^{u(\cdot)}(t), \quad 0 \leq t \leq T, $$

$$ Y^{u(\cdot)}(T) = -\nabla \phi(X^{u(\cdot)}(T)), $$

$A^*(t)$ is the adjoint operator of $A(t)$.
Define the Hamiltonian:

\[
H : [0, T] \times \Omega \times K \times \mathcal{O} \times K \times L_2(K) \rightarrow \mathbb{R},
\]

\[
H(t, x, u, y, z) := -g(x, u) + \langle F(x, u), y \rangle + \langle G(x) Q^{1/2}(t), z \rangle_2.
\]

The (adjoint) BSPDE:

\[
-dY^{u(\cdot)}(t) = \left[A^*(t) \ Y^{u(\cdot)}(t) + \nabla_x H(X^{u(\cdot)}(t), u(t), Y^{u(\cdot)}(t), Z^{u(\cdot)}(t) Q^{1/2}(t)) \right] dt
- Z^{u(\cdot)}(t) dM(t) - dN^{u(\cdot)}(t), \quad 0 \leq t \leq T,
\]

\[
Y^{u(\cdot)}(T) = -\nabla \phi(X^{u(\cdot)}(T)),
\]

\(A^*(t)\) is the adjoint operator of \(A(t)\).
\[\mathcal{M}^{2,c}_{[0,T]}(K) \sim \text{the space of continuous square integrable martingales in } K. \]

Two elements \(M \) and \(N \) of \(\mathcal{M}^{2,c}_{[0,T]}(K) \) are very strongly orthogonal (VSO) if

\[
\mathbb{E} [M(\tau) \otimes N(\tau)] = \mathbb{E} [M(0) \otimes N(0)],
\]

for all \([0, T]\)-valued stopping times \(\tau \).

In fact: \(M \) and \(N \) are VSO \(\iff \ll M, N >> = 0. \)

\[\Lambda^2(K; \mathcal{P}, M) \sim \text{the space of integrands w.r.t. } M \text{ s.t.} \]

\[
\Phi(t, \omega) \, Q^{1/2}(t, \omega) \in L_2(K), \text{ for every } h \in K
\]

the \(K \)-valued process \(\Phi \circ Q^{1/2}(h) \) is predictable,

\[
\mathbb{E} \left[\int_0^T \| (\Phi \circ Q^{1/2})(t) \|_2^2 \, dt \right] < \infty.
\]
Problem formulation

Pontryagin stochastic maximum principle

Plan of the proof

Statement

Assumptions

The adjoint equation

- \(\mathcal{M}^{2,c}_{[0,T]}(K) \) \(\rightsquigarrow \) the space of continuous square integrable martingales in \(K \).

Two elements \(M \) and \(N \) of \(\mathcal{M}^{2,c}_{[0,T]}(K) \) are very strongly orthogonal (VSO) if

\[
\mathbb{E} [M(\tau) \otimes N(\tau)] = \mathbb{E} [M(0) \otimes N(0)],
\]

for all \([0, T]\)-valued stopping times \(\tau \).

In fact: \(M \) and \(N \) are VSO if \(\langle \langle M, N \rangle \rangle = 0 \).

- \(\Lambda^2(K; \mathcal{P}, M) \) \(\rightsquigarrow \) the space of integrands w.r.t. \(M \) s.t.

\[
\Phi(t, \omega) Q^{1/2}(t, \omega) \in L_2(K), \quad \text{for every } h \in K
\]

the \(K \)-valued process \(\Phi \circ Q^{1/2}(h) \) is predictable,

\[
\mathbb{E} \left[\int_0^T \| (\Phi \circ Q^{1/2})(t) \|_2^2 \, dt \right] < \infty.
\]
Problem formulation

Pontryagin stochastic maximum principle

Plan of the proof

Statement

Assumptions

The adjoint equation

\[\mathcal{M}_{[0,T]}^{2,c}(K) \sim \text{the space of continuous square integrable martingales in } K. \]

Two elements \(M \) and \(N \) of \(\mathcal{M}_{[0,T]}^{2,c}(K) \) are very strongly orthogonal (VSO) if

\[\mathbb{E} [M(\tau) \otimes N(\tau)] = \mathbb{E} [M(0) \otimes N(0)], \]

for all \([0, T]\)-valued stopping times \(\tau \).

In fact: \(M \) and \(N \) are VSO \(\iff \langle \langle M, N \rangle \rangle = 0. \)

\[\Lambda^2(K; \mathcal{P}, M) \sim \text{the space of integrands w.r.t. } M \text{ s.t.} \]

\[\Phi(t, \omega) Q^{1/2}(t, \omega) \in L_2(K), \text{ for every } h \in K \]

the \(K \)-valued process \(\Phi \circ Q^{1/2}(h) \) is predictable,

\[\mathbb{E} \left[\int_0^T \| (\Phi \circ Q^{1/2})(t) \|_2^2 \, dt \right] < \infty. \]
Definition

A solution of a BSPDE:

\[
\begin{aligned}
- dY(t) &= \left(A(t) Y(t) + f(t, Y(t), Z(t) Q^{1/2}(t)) \right) dt \\
- Z(t) dM(t) - dN(t), & \quad 0 \leq t \leq T, \\
Y(T) &= \xi,
\end{aligned}
\]

is \((Y, Z, N) \in L^2_{\mathcal{F}}(0, T; V) \times \Lambda^2(K; \mathcal{P}, \mathcal{M}) \times \mathcal{M}^{2,c}_{[0, T]}(K)\) s.t. \(\forall t \in [0, T] :\)

\[
Y(t) = \xi + \int_t^T (A(s) Y(s) + f(s, Y(s), Z(s) Q^{1/2}(s))) ds \\
- \int_t^T Z(s) dM(s) - \int_t^T dN(s),
\]

\(N(0) = 0, \) \(N\) is VSO to \(M.\)
The following theorem gives the unique solution to the adjoint equation.

Theorem 1 (Existence & uniqueness of the solution of the adjoint BSPDE)

Assume (H1)–(H3). There exists a unique solution \((Y^{u(\cdot)}, Z^{u(\cdot)}, N^{u(\cdot)})\) to the adjoint BSPDE in \(L^2_{\mathcal{F}}(0, T; V) \times \Lambda^2(K; \mathcal{P}, \mathcal{M}) \times \mathcal{M}^{2,c}_{[0,T]}(K)\).

The proof of this theorem can be found in:

Denote the solution of the (adjoint) BSPDE corresponding to \(u^*(\cdot)\) by \((Y^*, Z^*, N^*)\).
The following theorem gives the unique solution to the adjoint equation.

Theorem 1 (Existence & uniqueness of the solution of the adjoint BSPDE)

Assume (H1)–(H3). There exists a unique solution \((Y^u(\cdot), Z^u(\cdot), N^u(\cdot))\) to the adjoint BSPDE in \(L^2_{\mathcal{F}}(0, T; \mathcal{V}) \times \Lambda^2(K; \mathcal{P}, \mathcal{M}) \times \mathcal{M}^2_c[0, T](K)\).

The proof of this theorem can be found in: [Al-Hussein, A., Backward stochastic partial differential equations driven by infinite dimensional martingales and applications, Stochastics, Vol. 81, No. 6, 2009, 601-626].

Denote the solution of the (adjoint) BSPDE corresponding to \(u^*(\cdot)\) by \((Y^*, Z^*, N^*)\).
The following theorem gives the unique solution to the adjoint equation.

Theorem 1 (Existence & uniqueness of the solution of the adjoint BSPDE)

Assume (H1)–(H3). There exists a unique solution \((Y_u(\cdot), Z_u(\cdot), N_u(\cdot))\) to the adjoint BSPDE in \(L^2_{\mathcal{F}}(0, T; V) \times \Lambda^2(K; \mathcal{P}, \mathcal{M}) \times \mathcal{M}^{2,c}_{[0,T]}(K)\).

The proof of this theorem can be found in:

Denote the solution of the (adjoint) BSPDE corresponding to \(u^*(\cdot)\) by \((Y^*, Z^*, N^*)\).
Outline

1 Problem formulation
 - Statement
 - Assumptions
 - The adjoint equation

2 Pontryagin stochastic maximum principle

3 Plan of the proof
 - Estimates
 - Variational inequality
 - Proof
 - Two more lemmas
 - Proof of main result
Theorem 2 (Pontryagin stochastic maximum principle)

Suppose (H1)–(H3). Assume \((X^*, u^*(\cdot))\) is an optimal pair for our control problem.

Then there exists a unique solution \((Y^*, Z^*, N^*)\) to the corresponding BSPDE s.t. the following inequality holds:

\[
\left\langle \nabla_u H(t, X^*(t), u^*(t), Y^*(t), Z^*(t)Q^{1/2}(t)), u - u^*(t) \right\rangle_\mathcal{F} \leq 0,
\]

\(\forall \ u \in U, \ \text{a.e.} \ t \in [0, T], \ \text{a.s.}\)
Outline

1 Problem formulation
 - Statement
 - Assumptions
 - The adjoint equation

2 Pontryagin stochastic maximum principle

3 Plan of the proof
 - Estimates
 - Variational inequality
 - Proof
 - Two more lemmas
 - Proof of main result
Let $u^*(\cdot)$ be an optimal control and X^* be the corresponding solution of SPDE (1). Let $u(\cdot)$ be s.t. $u^*(\cdot) + u(\cdot) \in \mathcal{U}_{ad}$.

For $0 \leq \varepsilon \leq 1$ consider the variational control:

$$u_\varepsilon(t) = u^*(t) + \varepsilon u(t), \quad t \in [0, T].$$

The convexity of $U \Rightarrow u_\varepsilon(\cdot) \in \mathcal{U}_{ad}$.

Get the corresponding X_ε of (1).

Let p be the solution of the linear equation:

$$\begin{cases}
 dp(t) = (A(t)p(t) + F_x(X^*(t), u^*(t))p(t))dt \\
 \quad + F_u(X^*(t), u^*(t))u(t)dt + G_x(X^*(t))p(t)dM(t), \\
 p(0) = 0.
\end{cases}$$
Let \(u^*(\cdot) \) be an optimal control and \(X^* \) be the corresponding solution of SPDE (1). Let \(u(\cdot) \) be s.t. \(u^*(\cdot) + u(\cdot) \in U_{ad} \).

For \(0 \leq \varepsilon \leq 1 \) consider the variational control:

\[
u_\varepsilon(t) = u^*(t) + \varepsilon u(t), \quad t \in [0, T].
\]

The convexity of \(U \Rightarrow u_\varepsilon(\cdot) \in U_{ad} \).

Get the corresponding \(X_\varepsilon \) of (1).

Let \(p \) be the solution of the linear equation:

\[
\begin{cases}
 dp(t) = (A(t)p(t) + F_x(X^*(t), u^*(t))p(t))dt \\
 \quad \quad \quad \quad + F_u(X^*(t), u^*(t))u(t)dt + G_x(X^*(t))p(t)dM(t), \\
 p(0) = 0.
\end{cases}
\]
We obtain:

Lemma 1

Assume (H1), (H3). Let

\[\eta_\varepsilon(t) = \frac{X_\varepsilon(t) - X^*(t)}{\varepsilon} - p(t), \quad t \in [0, T]. \]

Then:

1. \[\sup_{t \in [0, T]} E \left[|p(t)|^2 \right] < \infty, \]
2. \[\sup_{t \in [0, T]} E \left[|X_\varepsilon(t) - X^*(t)|^2 \right] = O(\varepsilon^2), \]
3. \[\lim_{\varepsilon \to 0^+} \sup_{t \in [0, T]} E \left[|\eta_\varepsilon(t)|^2 \right] = 0. \]
Lemma 2 (Variational inequality)

Suppose (H1)–(H3). Then \(\forall \varepsilon > 0 \),

\[
J(u_\varepsilon(\cdot)) - J(u^*(\cdot)) = \varepsilon \mathbb{E} \left[\phi_X(X^*(T)) p(T) \right]
\]

\[
+ \varepsilon \mathbb{E} \left[\int_0^T g_X(X^*(s), u^*(s)) p(s) \, ds \right]
\]

\[
+ \mathbb{E} \left[\int_0^T (g(X^*(s), u_\varepsilon(s)) - g(X^*(s), u^*(s))) \, ds \right]
\]

\[
+ o(\varepsilon).
\]
Sketch proof of Lemma 2

Note

\[J(u_\varepsilon(\cdot)) - J(u^*(\cdot)) = I_1(\varepsilon) + I_2(\varepsilon), \]

where

\[I_1(\varepsilon) = \mathbb{E} \left[\phi(X_\varepsilon(T)) - \phi(X^*(T)) \right], \]

\[I_2(\varepsilon) = \mathbb{E} \left[\int_0^T \left(g(X_\varepsilon(s), u_\varepsilon(s)) - g(X^*(s), u^*(s)) \right) ds \right]. \]

Then apply Lemma 1 (2), (3).
Lemma 3

If (H1)–(H3) hold, then

\[- \varepsilon \mathbb{E} \langle Y^*(T), p(T) \rangle + \varepsilon \mathbb{E} \left[\int_0^T g_x(X^*(s), u^*(s)) p(s) \, ds \right] + \mathbb{E} \left[\int_0^T (-\delta_\varepsilon H(s) + \langle Y^*(s), \delta_\varepsilon F(s) \rangle) \, ds \right] \geq o(\varepsilon),\]

where

\[
\delta_\varepsilon F(s) = F(X^*(s), u_\varepsilon(s)) - F(X^*(s), u^*(s)),
\]

\[
\delta_\varepsilon H(s) = H(X^*(s), u_\varepsilon(s), Y^*(s), Z^*(s)Q^{1/2}(s)) - H(X^*(s), u^*(s), Y^*(s), Z^*(s)Q^{1/2}(s)).
\]
Proof of Lemma 3

Since $u^*(\cdot)$ is an optimal control, $J(u_\varepsilon(\cdot)) - J(u^*(\cdot)) \geq 0$.

Next apply Lemma 2 and the definition of the Hamiltonian H.

Next need the following relation:
Since $u^*(\cdot)$ is an optimal control, $J(u_\varepsilon(\cdot)) - J(u^*(\cdot)) \geq 0$.

Next apply Lemma 2 and the definition of the Hamiltonian H.

Next need the following relation:
Lemma 4

\[\mathbb{E} \langle Y^*(T), p(T) \rangle = \mathbb{E} \left[\int_0^T g_x(X^*(s), u^*(s)) p(s) \, ds \right] \]
\[+ \mathbb{E} \left[\int_0^T \langle Y^*(s), F_u(X^*(s), u^*(s))u(s) \rangle \, ds \right]. \]

Proof of Lemma 4

▷ Use Itô's formula together with

\[\langle \nabla_x H(X^*(t), u^*(t), Y^*(t), Z^*(t) Q^{1/2}(t)), p(t) \rangle \]
\[= - g_x(X^*(t), u^*(t)) p(t) + \langle F_x(X^*(t), u^*(t)) p(t), Y^*(t) \rangle \]
\[+ \langle G(X^*(t)) Q^{1/2}(t), Z^*(t) Q^{1/2}(t) \rangle \quad a.s. \forall t \in [0, T]. \]
Lemma 4

\[\mathbb{E} \left\langle Y^*(T), p(T) \right\rangle = \mathbb{E} \left[\int_0^T g_x(X^*(s), u^*(s)) p(s) \, ds \right] + \mathbb{E} \left[\int_0^T \left\langle Y^*(s), F_u(X^*(s), u^*(s)) u(s) \right\rangle \, ds \right]. \]

Proof of Lemma 4

▷ Use Itô’s formula together with

\[
\left\langle \nabla_x H(X^*(t), u^*(t), Y^*(t), Z^*(t)Q^{1/2}(t)), p(t) \right\rangle \\
= - g_x(X^*(t), u^*(t)) p(t) + \left\langle F_x(X^*(t), u^*(t)) p(t), Y^*(t) \right\rangle \\
+ \left\langle G(X^*(t))Q^{1/2}(t), Z^*(t)Q^{1/2}(t) \right\rangle_2 \quad \text{a.s. } \forall \ t \in [0, T].
\]
Proof of main result

Consider the adjoint equation. From Lemma 3, Lemma 4 get

\[
\mathbb{E} \left[\int_0^T \langle Y^*(s), \delta \epsilon F(s) - \epsilon F_u(X^*(s), u^*(s))u(s) \rangle ds \right] \\
- \mathbb{E} \left[\int_0^T \delta \epsilon H(s) ds \right] \geq o(\epsilon).
\]

The continuity, boundedness of \(F_u \) in (H1) and the DCT give

\[
\frac{1}{\epsilon} \mathbb{E} \left[\int_0^T \langle Y^*(s), \delta \epsilon F(s) - \epsilon F_u(X^*(s), u^*(s))u(s) \rangle ds \right] \\
= \mathbb{E} \left[\int_0^T \langle Y^*(s), \int_0^1 \left(F_u(X^*(s), u^*(s) + \theta(u_\epsilon(s) - u^*(s))) \\
- F_u(X^*(s), u^*(s)) \right) u(s) d\theta \rangle ds \right] \to 0,
\]
as \(\epsilon \to 0^+ \).
Proof of main result

Consider the adjoint equation. From Lemma 3, Lemma 4 get

\[
\mathbb{E} \left[\int_0^T \langle Y^*(s), \delta_\varepsilon F(s) - \varepsilon F_u(X^*(s), u^*(s))u(s) \rangle ds \right]
- \mathbb{E} \left[\int_0^T \delta_\varepsilon H(s)ds \right] \geq o(\varepsilon).
\]

The continuity, boundedness of \(F_u \) in (H1) and the DCT give

\[
\frac{1}{\varepsilon} \mathbb{E} \left[\int_0^T \langle Y^*(s), \delta_\varepsilon F(s) - \varepsilon F_u(X^*(s), u^*(s))u(s) \rangle ds \right]
= \mathbb{E} \left[\int_0^T \langle Y^*(s), \int_0^1 \left(F_u(X^*(s), u^*(s) + \theta(u_\varepsilon(s) - u^*(s)))
- F_u(X^*(s), u^*(s)) \right) u(s) d\theta \rangle ds \right] \to 0,
\]
as \(\varepsilon \to 0^+ \).
In particular

\[\mathbb{E} \left[\int_0^T \left\langle Y^*(s), \delta_\varepsilon F(s) - \varepsilon F_u(X^*(s), u^*(s)) u(s) \right\rangle ds \right] = o(\varepsilon). \]

\[\therefore - \mathbb{E} \left[\int_0^T \delta_\varepsilon H(s) ds \right] \geq o(\varepsilon). \]

\[\therefore \text{by dividing this inequality by } \varepsilon \text{ and letting } \varepsilon \to 0^+: \]

\[\mathbb{E} \left[\int_0^T \nabla_u H(t, X^*(t), u^*(t), Y^*(t), Z^*(t) Q^{1/2}(t)), u(t) \right] dt \leq 0. \]

The theorem then follows.
Thank you